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ABSTRACT 

This paper presents results for a single-pulse 
detonation tube wherein the effects of high 
temperature dissociation and the subsequent 
recombination influence the sensible heat 
release available for providing propulsive 
thrust. The study involved the use of ethylene 
and air at equivalence ratios of 0.7 and 1.0. 
The real gas effects on the sensible heat 
release were found to be significantly large so 
as to have an impact on the thrust, impulse 
and fuel consumption of a PDE. 
 

INTRODUCTION 
In our previous publication (ref. 1) it was 
shown that the high detonation temperatures 
associated with hydrocarbon-air and 
hydrogen-air mixtures caused a substantial 
amount of dissociation, and was accompanied 
by high concentrations of intermediate 
species. This process was accompanied by 
approximately an 11% decrease in the amount 
of energy available for thrust relative to a 
ramjet. The consequence of this loss was to 
reduce the thermal efficiency of the PDE 
below the value of the Brayton cycle 
efficiency at low values of inlet (ram) air 
temperature ratios. 
 
*Chief Scientist, Turbomachinery and Propulsion Systems Division, 
Fellow AIAA. 
�Senior Research Associate, Ohio Aerospace Institute, Senior 
Member AIAA. 

 
 The effect of stoichiometric propane-air 
dissociation loss on the performance 
parameters of a PDE was calculated as a 
function of temperature ratio as well as Mach 
number (0 to 5) in reference 2. The conditions 
investigated were for an ideal PDE (isentropic 
inlet and nozzle) at an altitude of 33,000 ft 
with inlet pressure of 3.8 psia and temperature 
of 400 °R . In these calculations, both the PDE 
and the Brayton (gas turbine) cycle had the 
same ram compression, but the Brayton had 
additional compression from a mechanical 
compressor. Therefore, at a given flight Mach 
number, the PDE has a lower temperature at 
the detonation chamber entrance than does the 
turbojet. 
 
The thermodynamic cycle calculations in 
reference 2 show that (a) the PDE had higher 
specific thrust than a ramjet up to Mach 2.3 
and (b) the PDE had higher performance than 
a turbojet over a wider Mach range, provided 
that the mechanical compression ratio in the 
turbojet was less than 4. The advantage of the 
PDE disappears as the mechanical 
compression ratio of the turbojet exceeds 4. 
Some advantages of a combined PDE/Ramjet 
cycle where the PDE provides static thrust and 
acceleration with ramjet takeover at Mach 2.5 
to 3 and scramjet operation at Mach 5 have 
been discussed in reference 2. 
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Since the products of the detonation process 
persist in the chamber for a short, but finite 
length of time prior to flowing out through the 
exhaust, we studied the effect of 
recombination on the sensible heat release 
(ref. 3). Unsteady, axisymmetric finite-rate 
chemistry computations were carried out for 
an open ended tube filled with hydrogen-air 
mixtures at standard conditions. Hydrogen-air 
mixtures were used due to the complexities of 
finite rate chemistry modeling for 
hydrocarbon-air mixtures and the lengthy 
computational times required. It was found 
that the recombination that occurred in the 
tube reduced the loss of sensible heat. At an 
equivalence ratio of 1.0, the sensible heat 
release loss with recombination was  
10.8 percent relative to the heating value of 
the mixture, whereas, previously, the loss was 
16.7 percent when chemical equilibrium was 
assumed. At an equivalence ratio of 0.6, 
dissociation effects reduced the sensible heat 
release by 4.7 percent when equilibrium was 
assumed, and recombination reduced the loss 
to 0.6 percent. The study (ref. 3) also showed 
that the fuel specific impulse with an 
equivalence ratio of 0.6 was higher than that at 
an equivalence ratio of 1.0, although the thrust 
at 0.6 was lower.  
 
In a recent paper (ref. 4) the impulse results of 
the analysis described above for hydrogen-air 
were compared to the experimental data 
obtained at the Air Force Research Labs  
(ref. 5). The AFRL data, obtained with an 
opened-ended detonation tube, were shown to 
be in excellent agreement with our unsteady 
CFD results over a range of equivalence 
ratios. In addition, a thermodynamic cycle 
calculation, with isentropic inlet and exhaust, 
yielded values that were 200 to 300 seconds of 
impulse, which may reflect the potential 
improvement associated with the addition of 
an exhaust nozzle (ref. 4). 
 

 
Based on the results obtained with hydrogen-
air, an estimate was made of the effect of the 
recombination effect that would occur in 
propane-air detonation (ref. 6). Since the 
dissociation losses reduced the sensible heat 
release by 16.7 percent relative to the heating 
value with equilibrium chemistry and 
recombination reduced the loss to 10.8, a 
decrement of 5 percent was chosen as the heat 
loss relative to the lower heating value of the 
propane-air mixture. The results (ref. 6) 
showed that the performance of the PDE 
improved relative to the Brayton cycle. The 
PDE specific thrust was comparable to the 
ramjet performance (with no recombination) 
out to a Mach number of approximately 3.0. 
 
Our work in reference 6 was only an 
approximation of the recombination based on 
hydrogen-air chemistry. In the current  paper, 
the degree of recombination that occurs in 
hydrocarbon-air mixtures is computed using 
the unsteady, axisymmetric, finite rate method 
described above (ref. 3).   
 

PHYSICAL MODEL AND  
NUMERICAL METHOD 

 
Geometry and Test Gas 
Single-pulse computations were performed for 
a constant area detonation tube having a 
length of 1.0 meter and a diameter of  
6.6 centimeters. The tube is closed at the head 
end and the other is open. Ethylene and air 
having an equivalence ratio of 1.0 and 0.7, 
with a temperature of 298 K were used as the 
reactants. Calculations were performed for 
zero forward flight velocity and at a pressure 
of 1 bar. At the start of the computations, the 
entire tube is filled with the ethylene-air 
mixture. The ambient pressure outside the 
detonation tube is set at 1 bar. 
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To initiate the detonation, a small region of 
high temperature and high pressure nitrogen 
gas was used. For an equivalence ratio of 1.0, 
the ignition region was 0.5 centimeters, the 
temperature was 3000 K and the pressure was 
45 bar. These values are comparable to those 
used by Kailasanath (ref. 12). It is noted that 
these values are higher than we used 
previously with hydrogen-air mixtures (ref. 3), 
which reflects the higher ignition energy 
requirements for ethylene-air mixtures. For an 
equivalence ratio of 0.7, the ignition region 
was 1.0 centimeter, the temperature was  
3000 K and the pressure was 50 bar. In this 
direct initiation method, the shock wave 
generated at the interface transitions into a 
Chapman-Jouget detonation wave, as will be 
shown later. 
 
Computational Method 
Single-pulse finite rate calculations were used 
to compute the species evolution and resulting 
thrust and impulse. The analysis was carried 
out using an in-house developed time-accurate 
CFD code (refs. 7 and 8).  The code solves the 
axisymmetric Navier-Stokes equations for a 
non-equilibrium mixture of thermally perfect 
gases, using an implicit, total variation 
diminishing (TVD) scheme. It includes a 
generalized detailed chemistry capability, 
various options for turbulence models, and 
steady state or time-accurate algorithms. In the 
present study, as in reference 3, we excluded 
viscous effects, thereby using the Euler 
equations. 
 
The numerical method used for solving the 
governing set of equations is described in 
detail in reference 7 and is briefly described 
here. The equation set is solved using a fully 
implicit, first-order accurate in time, variable 
step backward differentiation formula (BDF) 
method. The numerical fluxes are evaluated 
using a second order spatially accurate TVD 
scheme. The resulting equations are then 
linearized in a conservative manner and 

solved iteratively, by using a lower-upper 
relaxation procedure consisting of successive 
Gauss-Seidel (LU-SGS) sweeps. 
 
The chemical reaction mechanism used for 
ethylene-air combustion was based on the 
short mechanism of Li, Varatharajan and 
Williams (ref. 9) and consists of 36 reactions 
among 20 species, with nitrogen being treated 
as an inert, i.e., non reacting species. This 
chemical modeling was designed to be applied 
with reasonable accuracy over the range of 
post-shock temperatures between 1000 K and 
2500 K, pressures between 0.5 and 100 bar 
and equivalence ratios between 0.5 and 3. The 
short mechanism was shown to retain the 
essence of the chemical pathways and to yield 
reasonable accuracy with the detailed 
mechanism of reference 9. 
 
The inversion of large matrices is avoided by 
partitioning the system into reacting and non-
reacting parts. Therefore, the matrices 
requiring inversion are of the same size as 
those in the point implicit methods. The 
significant advantage of the present method, 
because it is fully implicit, lies in the fact that 
it is stable for large CFL numbers, thereby 
enabling the use of relatively large time steps 
to minimize computational cost. 
 
In order to maintain high resolution  of the 
wave front at all times, without the use of 
thousands of grid points, a multi-level, 
dynamically adaptive grid was implemented in 
which a very fine subgrid continuously slides 
along with the detonation wave front  
(ref. 7).The minimum and maximum grid 
spacings used in this study were 0.00195 and 
1.0 cm. 
 

RESULTS 
Initiation 
Finite rate chemistry computations were 
performed for equivalence ratios of 0.7 and 
1.0. As shown previously in our computations 
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(ref. 3), a high pressure zone is observed at the 
closed end of the detonation tube. At the 
interface of this region and the reactants, an 
expansion wave moves toward the head end 
and is reflected. At the same time a 
compression wave moves toward the open end 
of the tube which compresses and heats the 
ethylene-air mixture. Following a short 
induction period, combustion occurs at the 
interface boundary and shock waves propagate 
upstream and downstream. The compression 
waves overtake the shock and cause 
acceleration. The shock front and the 
combustion front couple and form a 
detonation wave. 
 
Detonation Velocity 
The computed detonation velocities for 
equivalence ratios of 0.7 and 1.0 are shown as 
a function of time in figure 1. The velocities 
are compared to the predictions from the CEA 
equilibrium code of Gordon and McBride  
(ref. 10) for a Chapman-Jouget detonation. 
Following an initial overshoot during the short 
transient phase, the detonation speeds reach 
constant values at about 200 microseconds. 
The detonation speeds are slightly higher than 
those predicted by the CEA code. 
 
Heat Release 
The corresponding values of the sensible heat 
release (for both equivalence ratios) are shown 
in figure 2 for the finite rate calculations and 
for the chemical equilibrium results from the 
CEA code. The differences between the finite 
rate and the equilibrium results when the 
detonation reaches the end of the tube amount 
to approximately 6.6% for an equivalence 
ratio of 0.7, and 10.8% for an equivalence 
ratio of 1.0. The higher heat release for the 
finite rate calculations is due to chemical 
recombination inside the tube. 
 
In our previous work on hydrogen-air 
detonation with an equivalence ratio of 1.0 
(ref. 3), we found a 5.8% difference between 

the finite rate calculations and the equilibrium 
results.  
 
If we now take into account the increase in 
sensible heat due to recombination in the 
ethylene-air reaction, and use the thermo cycle 
code as described in references 6 and 13, the 
performance of a PDE exceeds that of a ramjet 
up to a flight Mach number of 3.5. 
 
Pressure Evolution 
The pressure evolution along the tube is 
shown in figure 3 for an equivalence ratio of 
1.0. Initially, a large overshoot occurs when 
the detonation wave is initiated. The overshoot 
quickly reduces in value and within 25 cm. the 
pressure reaches a value which is equivalent to 
the von Neumann spike as determined from 
the chemical equilibrium code, CEA. The 
detonation pressure remains constant over the 
remaining 75 cm. of the tube, finally decaying 
as the wave exits the tube.  
 
Flow Properties at Exhaust 
Figure 4 shows the flow properties at the exit 
of the detonation tube for the ethylene-air 
mixture with an equivalence ratio of 1.0. The 
passage of the initial detonation pressure  
spike and temperature rise occurred at  
0.5 milliseconds, followed by a rapid decay 
within 1 millisecond. The plateau region 
where the pressure remains at a level value is 
seen to persist up to about 2.5 milliseconds, 
after which the pressure decreases further to 
near ambient levels.  
 
Species Concentrations 
The changes in gas species were determined 
during the detonation process. In figure 5, the 
species concentrations for an equivalence ratio 
of 1.0 are seen to decay rapidly within  
1.5 milliseconds, followed by a lower rate of 
decay. The concentrations of O and OH 
decline by one order of magnitude in the first 
1.5 milliseconds. 
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Figure 6 shows the behavior for other species 
in the ethylene-air reaction. These species 
have very low concentration values during 
most of the detonation process except during 
the ignition phase. It is these changes in 
intermediate species that indicate 
recombination occurring within the tube and 
that give rise to additional sensible heat 
release. 
 
Since the decay of species occurs so rapidly at 
0.5 milliseconds, the use of a longer 
detonation tube would not be expected to have 
any significant effect on the heat release. 
 
Force and Specific Impulse Calculations 
The corresponding thrust and impulse for the 
computations described above are shown in 
figures 7 and 8 for an equivalence ratio of 1. 
Initially, the sharp rise in pressure creates a 
short duration thrust spike, figure 7, which is 
followed by a plateau region of about  
2 milliseconds duration and a subsequent 
decay to zero. It is primarily in this level 
pressure duration that PDE thrust is generated. 
The corresponding impulse value is shown in 
figure 8. The value of the impulse at its 
maximum point is 1962 seconds. This value 
compares well with that of Wintenberger et al. 
(ref. 11) of approximately 1840 seconds. 

       
CONCLUSIONS 

Real gas effects, i.e., dissociation and 
recombination in detonating mixtures of 
ethylene-air mixtures have been calculated 
using unsteady CFD. These effects were found 
to be critical in determining the sensible heat 
of reaction so that propulsion performance 
calculations can be made for PDE�s. The 
amount of heat release in each propulsion 
cycle is of critical importance in the 
comparison of PDE capability relative to other 
propulsion devices. 
 
It was found that the difference between the 
finite rate calculations and the equilibrium 

results for a stoichiometric mixture of 
ethylene-air was twice as large as those for 
stoichiometric hydrogen-air at an initial 
pressure of 1 bar and 298 K. 
 
The sensible heat calculations shown in this 
paper indicate that the losses associated with a 
typical hydrocarbon are less than those 
assumed previously (ref. 6), which were based 
on hydrogen-air detonation. Use of the new 
values determined in this paper would 
increase the competitive range of a PDE, 
relative to a ramjet, to 3.5.  
 
Additional work is required to establish the 
role of a PDE in flight applications, either as a 
stand alone device or as part of a combined 
cycle. Some of the issues are associated with 
static thrust capability, nozzle and exhaust 
systems and thrust per unit frontal area. 
 
As stated previously (ref. 6), the PDE may 
have practical advantages over other cycles, 
i.e., simplicity, fewer moving parts, and lower 
cost. In order to realize these benefits, the 
effects of high temperature and high internal 
flow velocity on heat transfer and viscous 
losses as well as fatigue and leakage issues 
related to multi-cycle operation and valving 
require attention. All of these items need to be 
addressed and await practical demonstration. 
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Figure 1. Detonation speed variation with time. Ethylene-air mixture, equivalence ratio 1.0, 

pressure 1 bar, temperature 298 K. 
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Figure 2. Heat release per unit mass of burned fuel as a function of time. Ethylene-air mixture, 
equivalence ratios 0.7 and 1.0, pressure 1 bar, temperature 298 K. 
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Figure 3. Pressure evolution traces. Equivalence ratio 1.0, pressure 1 bar, temperature 298 K. 
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Figure 4. Flowfield conditions at the exit of detonation tube (1.0 meter) as a function of time, 
equivalence ratio 1.0. 
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Figure 5. Species mole fractions at the exit of the detonation tube (1.0 meter) as a function of 
time, equivalence ratio 1.0. 
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Figure 6. Species mole fractions at the exit of the detonation tube (1.0 meter) as a function of 
time, equivalence ratio 1.0. 
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Figure 7. Force at the exit of the detonation tube (1.0 meter) for finite rate chemistry calculation. 
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Figure 8. Specific Impulse at the exit of the detonation tube (1.0) meter for finite rate  
chemistry calculation. 
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This paper presents results for a single-pulse detonation tube wherein the effects of high temperature dissociation and the
subsequent recombination influence the sensible heat release available for providing propulsive thrust. The study
involved the use of ethylene and air at equivalence ratios of 0.7 and 1.0. The real gas effects on the sensible heat release
were found to be significantly large so as to have an impact on the thrust, impulse, and fuel consumption of a PDE.


